S29GL-N (S Models) 3 Volt-only Flash Memory with Page Mode featuring 110 nm MirrorBit[™] Process Technology Permanent Sector Lock Security Device Documentation

Datasheet Supplement

ADVANCE INFORMATION

Preface

This supplementary document provides information on a device designed for limited distribution. It describes how the features, operation, and ordering options of this device have been enhanced or changed from the standard device on which it is based. The information contained in this document modifies any information on the same topics established by the data sheets listed in the Affected Documents/Related Documents table and should be used in conjunction with those documents. This document may also contain information that was not previously covered by the S29GL-N data sheet. It is intended for hardware system designers and software developers of applications, operating systems, or tools.

Affected Documents/Related Documents

Title	Publication Number
S29GL-N MirrorBit™ Flash Family Datasheet	S29GL-N_00_A7_E

_

Table of Contents

Preface	. I
Affected Documents/Related Documents	I
Table of Contents	. 2
Device Description	3
Permanent Sector Lock Algorithm Feature Description	3
Ordering Options Changed	3
Device Bus Operation Changed	5
Device ID Changed	5
Table I. S29GL-N Device Identification	5
Advance Sector Protection Clarification	. 5
Figure I. Persistent Protection Mode	6
Figure 2. Password Protection Mode	7
Persistent Protection Bit (PPB)	
Operation Changed	. 8
Table 2. Non-Volatile Sector Protection Command Set	8

Distinguishing Between Permanent Sector	
Protection from Standard (Non-Permanent	
Sector Protection) Devices	. 8
Table 3. Lock Register	9
Table 4. Lock Register Command Set	9
Table 5. Lock Register Bit Read-out Sequence	10
Global Volatile Sector Protection Freeze Comm	and
Set Changed	. 10
64-Ball BGA 10mm x 13mm Package Option	. 10
FAA064 Connection Diagram 64-Ball BGA 10mm x 13mm	II
FAA064 Physical Dimensions	12
LAA064 Connection Diagram 64-Ball Fortified BGA	13
LAA064 Physical Dimensions	14
Revision Summary	. 15

Device Description

Permanent Sector Lock Algorithm Feature Description

The device offers a unique Permanent Sector Lock Algorithm that allows the host system to permanently secure the data in any desired sectors of the memory array via a software command at V_{CC} supply levels. There is no need for high voltage (> V_{CC}) on any pin during this operation. Initiating this software command sequence permanently disables both program and erase operations in any desired sectors. This feature protects the data in these areas from being changed or erased in any way after this command has been activated. Sectors can be incrementally locked at any time and in any sequence.

Ordering Options Changed

The ordering numbers (Valid Combination) for Permanent Sector Lock Products are formed by a combination of the following:

256 Mb (16 M x 16-Bit/32 M x 8-Bit), 512 Mb (22 M x 16 Bit/64 M x 8 Bit)

512 Mb (32 M x 16-Bit/64 M x 8-Bit)

	S29GL128N						
128, 256 Mb	Speed (ns)	Package & Model Number		Packing Type	Package Description (Note 2)		
S29GL128N	10 11		S1, S2	0 2 2 (Note 1)	LAA064	Contified DCA	
S29GL256N	10, 11	FAI, FFI	S3, S4	0, 2, 3 (Note 1)	FAA064	FOLLINEU BGA	

Notes:

1. Type 0 is standard. Specify other options as required.

2. BGA package marking omits leading "S29" and packing type designator from ordering number. For example, the package marking for OPN S29GL128N10FAIS10 is "GL128N10FAIS1."

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult your local sales office to confirm availability of specific valid combinations and to check on newly released combinations.

	S29					
512 Mb	Speed (ns)	Package & Temperature	Model Number	Packing Type	Package Descr	iption (Note 2)
S29GL512N	10, 11	FAI, FFI	S1, S2	0, 2, 3 (Note 1)	LAA064	Fortified BGA

Notes:

1. Type 0 is standard. Specify other options as required.

2. BGA package marking omits leading "S29" and packing type designator from ordering number. For example, the package marking for OPN S29GL512N10FAIS10 is "GL512N10FAIS1."

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult your local sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Device Bus Operation Changed

Permanent Sector Lock devices are in word (x16) configuration only, which is different from standard devices, where are both byte and word configurable.

Device ID Changed

Permanent Sector Lock devices have three byte Device IDs. These Device IDs are different from those found in standard S29GL-N devices. Customers can distinguish Standard and Permanent Sector Lock devices by reading the status of a Lock Register (See "Advance Sector Protection Clarification" on page 5 for more details).

Cycle	CE#	OE#	WE#	A21 to A16	A15 to A10	Α9	A8 to A7	A6	A5 to A4	A3	A2	A1	AO	DQ15 to DQ0
Cycle 1	L	L	Н	Х	Х	$\rm V_{\rm ID}$	Х	L	Х	L	L	L	Н	227Eh/7Eh
Cycle 2	L	L	Н	х	Х	$V_{\rm ID}$	Х	L	Х	Н	Н	Н	L	2237h/37h
Cycle 3	L	L	н	х	х	V_{ID}	х	L	х	Н	Н	Н	Н	2201h/01h

Table 1. S29GL-N Device Identification

Legend: $L = Logic Low = V_{IL'} H = Logic High = V_{IH'} X = Don't care.$

Advance Sector Protection Clarification

The Advance Sector Protection feature can disable programming or erase operations in any or all sectors, and can be implemented via software and/or hardware methods. Figure 1 and Figure 2 illustrate a high level logic diagram between the Persistent Protection Mode and Password Protection Mode.

Figure 1. Persistent Protection Mode

Figure 2. Password Protection Mode

Persistent Protection Bit (PPB) Operation Changed

Specifically the PPB (Persistent Protection Bit) feature has changed to only one time programmable (OTP).

A single Persistent (non-volatile) Protection Bit is assigned to each sector. If a PPB is programmed to the protected state through the "PPB Program" command, that sector will be protected from program or erase operations and will be read-only. Programming the PPB bit requires the typical word programming time without utilizing the Write Buffer.

Non-Volatile Sector Protection command sequence (see Table 2) must be issued for any of the following operations:

- Non-Volatile Sector Protection Command Set Entry
- PPB Program Command
- PPB Status Read Command
- Non-Volatile Sector Protection Command Set Exit

Notes:

1. Non-Volatile Sector Protection Command Set Entry command, disables reads and writes from the main memory.

2. There are no means by which to individually erase or group erase a PPB, once it is programmed.

Table 2. Non-Volatile Sector Protection Command Set

	Non-Volatile Sector Protection Command Set Definitions									
		s		Bu	is Cycles	(Notes 2-	3)			
			ycle	Fii	rst	Sec	ond	Th	ird	
	Command Sequence	c	Addr	Data	Addr	Data	Addr	Data		
	Non-Volatile Sector Protection Command Set Entry		2	555		2AA		555	C0	
			2	AAA	AA	555	55	AAA		
	PPB Program	Word	2	XXX	40	64	00			
РВ	(Note 1),(Note 2)	Byte	2	XXX	AU	SA	00			
PPB Status Read (Note 2)		Word	1	64						
		Byte	Ţ	SA	RD (0)					
	Non-Volatile Sector Protection Command Set Exit (Note 3)	Word	2	xxx	90	XXX	00			

Notes:

- 2. Protected State = "00h", Unprotected State = "01h".
- 3. The Exit command returns the device to reading the array.

Distinguishing Between Permanent Sector Protection from Standard (Non-Permanent Sector Protection) Devices

The Lock Register consists of 4 bits, (DQ3, DQ2, DQ1, and DQ0). The DQ2, DQ1, DQ0 bits of the Lock Register are programmable by the user. DQ3 of the Lock Register is available only as a special option for these devices, via Factory programming. Users are not allowed to program both DQ2 and DQ1 bits of the Lock Register to the 00 state. If the user tries to program DQ2 and DQ1 bits of the Lock Register to the 00 state, the device aborts the Lock Register programming operation and resets the DQ2 and DQ1 bits of the Lock Register back to the default 11 state. The programming time of the Lock Register is the same as the typical word programming time without utilizing the Write Buffer of the device. During a Lock Register programming sequence execution, the DQ6 Toggle Bit I toggles until the programming of the Lock Register has completed to indicate programming status. All Lock Register bits are readable to allow users to verify Lock Register statuses. Initial access time is required to read the Lock Register.

^{1.} When the ACC pin = V_{HH} , the protection status of (PPB or DYB) is checked: If protected, program and erase are ignored per sector basis; if not protected, program and erase are allowed on a per sector basis.

Table 3. Lock Register

DQ3	DQ2	DQ1	DQ0
Persistent Sector Protection OTP Bit	Password Protection Mode Lock Bit	Persistent Protection Mode Lock Bit	SecSi Sector Protection Bit

- SecSi Sector Protection Bit allows the user to lock the SecSi Sector area.
- Persistent Protection Mode Lock Bit allows the user to set the device permanently to operate in the Persistent Protection Mode.
- Password Protection Mode Lock Bit allows the user to set the device permanently to operate in the Password Protection Mode.
- Persistent Sector Protection OTP Bit is set at factory through Factory Set option to disable the "All PPB Erase" command.

Lock Register Command Set sequence (Table 4) is needed to program and read Lock Register Bits.

	Non-Volatile Sector Protection Command Set Definitions								
		s			Bus C	cles			
			ycle	Fi	rst	Second		Third	
	Command Sequence				Data	Addr	Data	Addr	Data
	Lock Register Command Set Entry (Note 1, 2)		2	555		2AA	- 55	555	40
			5	AAA	44	555		AAA	
ter			2	xxx		xxx	Data		
egis	Lock Register bits Program (Note 3, 4)	Byte	2	XXX	AU	xxx	Data		
× Å	Leak Desister Dite Dead (Note 2)	Word	1	00	Data				
Loc			T	00	Dala				
	Lock Register Command Set Exit (Note 1, 2)		2	XXX	00	XXX	00		
				xxx	90	XXX	00		

Table 4. Lock Register Command Set

Notes:

- 1. The Exit command returns the device to reading the array.
- 2. If any of the Entry command was initiated, an Exit command must be issued to reset the device into read mode. Otherwise the device hangs.
- 3. All Lock Register bits are one-time programmable. Note that the program state = "0" and the erase state = "1". Also note that of both the Persistent Protection Mode Lock Bit and the Password Protection Mode Lock Bit cannot be programmed at the same time or the Lock Register Bits Program operation aborts and returns the device to read mode. Lock Register bits that are reserved for future use default to "1's". The Lock Register is shipped out as "FFFF's" before Lock Register Bit program execution.
- 4. Only DQ0, DQ1 and DQ2 are programmable by customer.

		DQ15 – DQ4 (Factory Default)	DQ3 Persistent Sector Protection OTP Bit	DQ2 Password Protection Mode Lock Bit	DQ1 Persistent Protection Mode Lock Bit	DQ0 SecSi Sector Protection Bit
New Dev	ice	1′s	1	1	1	1
Standard (non-Permanent	Persistent Mode	1′s	1	1	0	х
Protection Device)	Password Mode	1′s	1	0	1	х
Permanent	Persistent Mode	1′s	0	1	0	Х
Protection Device	Password Mode	1′s	0	0	1	х

Table 5. Lock Register Bit Read-out Sequence

Global Volatile Sector Protection Freeze Command Set Changed

Due to the fact that PPB feature has changed to OTP, Global Volatile Sector Protection Freeze Command Set is not required.

64-Ball BGA 10mm x 13mm Package Option

An additional package option is available for Permanent Sector Lock devices. This package option is a 64-Ball Grid Array (BGA) package with dimensions of 10 mm x 13 mm and a 1mm ball pitch. Standard package option 64-Ball Fortified BGA are also available for Permanent Sector Lock devices.

-D1 D Α G F Е D С В φ 0 0 0 0 0 Ο Ġ 00007 Ο 000 $/\gamma$ Ð Ο 0 0 0 0 0 0 6e 0000-5 Ð Ο 0 0 SE E1 Е 00 0 0 0 0 0 0 41.00 +0.20 -0.50 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 2 φ**0.50** 0000 00 Φ Δ 1.00 +0.20 В A1 ID. A1 CORNER /7\ 6 ób --SD φ0.08 M C Ф ♦0.15 M C A B TOP VIEW BOTTOM VIEW A2 // 0.20 C Ċ ⊇ 0.08 C SEATING PLANE

SIDE VIEW

PACKAGE		FAA 064					
JEDEC		N/A		NOTE			
	10.00	mm x 13.00 PACKAGE) mm	NOTE			
SYMBOL	MIN.	NOM.	MAX.				
A			1.20	OVERALL THICKNESS			
A1	0.30			BALL HEIGHT			
A2	0.64		0.78	BODY THICKNESS			
D		13.00 BSC.		BODY SIZE			
E		10.00 BSC.		BODY SIZE			
D1		7.00 BSC.		BALL FOOTPRINT			
E1		7.00 BSC.		BALL FOOTPRINT			
MD		8		ROW MATRIX SIZE D DIRECTION			
ME		8		ROW MATRIX SIZE E DIRECTION			
N		64		TOTAL BALL COUNT			
b	0.40	0.45	0.50	BALL DIAMETER			
е		1.00 BSC		BALL PITCH			
SD / SE		0.50 BSC		SOLDER BALL PLACEMENT			

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 2. ALL DIMENSIONS ARE IN MILLIMETERS.
- 3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.
- 4. e REPRESENTS THE SOLDER BALL GRID PITCH.
- 5. SYMBOL "MD" IS THE BALL ROW MATRIX SIZE IN THE "D" DIRECTION.
 - SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE "E" DIRECTION.

N IS THE TOTAL NUMBER OF SOLDER BALLS.

- DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM Z.
- SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.

WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW PARALLEL TO THE D OR E DIMENSION, RESPECTIVELY, SD OR SE = 0.000.

WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, SD OR SE = $\boxed{e/2}$

- 8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS.
- 9 FOR PACKAGE THICKNESS, "A" IS THE CONTROLLING DIMENSION.
- A1 CORNER TO BE IDENTIFIED BY CHAMFER, INK MARK, METALLIZED MARKINGS INDENTION OR OTHER MEANS.

3174\38.9G

FAA064 Physical Dimensions

LAA064 Connection Diagram 64-Ball Fortified BGA

Top View, Balls Facing Down

D1 0.20C 2X D A eD Е D C B F Q 000000 O /7\ 0000100007 SE 0000000000еE 000000000E E1 0 0 0 0 0 0 0 0 0 305.0° 0 0 0 0 0 0 0 0 0 20000000001.00±0.5 A1 CORNER ID. (INK OR LASER) 囱 A1 ∕6∖ NXøb → CORNER 0.20C 2X SD 7 1.00 ± 0.5 TOP VIEW ⊕ Ø0.25(M)CAB Ø0.10(M)C \angle_{A1} CORNER BOTTOM VIEW // 0.25 C Α ł Å2 SEATING PLANE Ċ □0.15 C A1 SIDE VIEW

PACKAGE		LAA 06	4			
JEDEC		N/A				
	13.0 F	0x11.00 PACKAGE	mm			
SYMBOL	MIN.	NOM.	MAX.	NOTE		
A	-	-	1.40	PROFILE HEIGHT		
A1	0.40	-	-	STANDOFF		
A2	0.60	-	-	BODY THICKNESS		
D	13	5.00 BS	c.	BODY SIZE		
E	11	.00 BS	c.	BODY SIZE		
D1	7	.00 BSC	c.	MATRIX FOOTPRINT		
E1	7	.00 BS	c.	MATRIX FOOTPRINT		
MD		8		MATRIX SIZE D DIRECTION		
ME		8		MATRIX SIZE E DIRECTION		
N		64		BALL COUNT		
øb	0.50	0.60	0.70	BALL DIAMETER		
eD	1.00 BSC.			BALL PITCH - D DIRECTION		
eE	1.00 BSC.			BALL PITCH - E DIRECTION		
SD/SE	0.50 BSC.			SOLDER BALL PLACEMENT		
	A1-	A8, K1	-к8	DEPOPULATED SOLDER BALLS		

NOTES:

1. DIMENSIONING AND TOLERANCING METHODS PER ASME Y14.5M-1994 .

2. ALL DIMENSIONS ARE IN MILLIMETERS .

3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010 (EXCEPT AS NOTED).

4. e REPRESENTS THE SOLDER BALL GRID PITCH .

- 5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.
 - SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE "E" DIRECTION.

N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.

- A SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW. WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW, SD OR SE = 0.000. WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, SD OR SE = $|\mathbf{e}/2|$
- 8. "X" IN THE PACKAGE VARIATIONS DENOTES PART IS UNDER QUALIFICATION.
- 9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS.

LAA064 Physical Dimensions

Revision Summary

Revision A0 (October 7, 2004)

Initial release.

Revision A1 (April 25, 2005)

Added the 256 and 512 densities to the valid combinations table.

Revision A2 (July 22, 2005)

Added Packing Type 2=7" Tape and Reel Reviced Device Number Description Reviced Valid Combinations Added LAA064 Connection Diagram from S29GL-N datasheet Added LAA064 Physical Dimensions from S29GL-N datasheet

Colophon

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (I) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior authorization by the respective government entity will be required for export of those products.

Trademarks and Notice

The contents of this document are subject to change without notice. This document may contain information on a Spansion LLC product under development by Spansion LLC. Spansion LLC reserves the right to change or discontinue work on any product without notice. The information in this document is provided as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or statutory. Spansion LLC assumes no liability for any damages of any kind arising out of the use of the information in this document.

Copyright ©2004-2005 Spansion LLC. All rights reserved. Spansion, the Spansion logo, and MirrorBit are trademarks of Spansion LLC. Other company and product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

